## Archive for the ‘python’ Category

I support scientific applications at The University of Manchester (see my LinkedIn profile if you’re interested in the details) and part of my job involves working on code written by researchers in a variety of languages. When I say ‘variety’ I really mean it – MATLAB, Mathematica, Python, C, Fortran, Julia, Maple, Visual Basic and PowerShell are some languages I’ve worked with this month for instance.

Having to juggle the semantics of so many languages in my head sometimes leads to momentary confusion when working on someone’s program. For example, I’ve been doing a lot of Python work recently but this morning I was hacking away on someone’s MATLAB code. Buried deep within the program, it would have been very sensible to be able to do the equivalent of this:

a=rand(3,3) a = 0.8147 0.9134 0.2785 0.9058 0.6324 0.5469 0.1270 0.0975 0.9575 >> [x,y,z]=a(:,1) Indexing cannot yield multiple results.

That is, I want to be able to take the first column of the matrix a and broadcast it out to the variables x,y and z. The code I’m working on uses MUCH bigger matrices and this kind of assignment is occasionally useful since the variable names x,y,z have slightly more meaning than a(1,3), a(2,3), a(3,3).

The only concise way I’ve been able to do something like this using native MATLAB commands is to first convert to a cell. In MATLAB 2013a for instance:

>> temp=num2cell(a(:,1)); >> [x y z] = temp{:} x = 0.8147 y = 0.9058 z = 0.1270

This works but I think it looks ugly and introduces conversion overheads. The problem I had for a short time is that I subconsciously expected multiple assignment to ‘Just Work’ in MATLAB since the concept makes sense in several other languages I use regularly.

from pylab import rand a=rand(3,3) [a,b,c]=a[:,0]

a = RandomReal[1, {3, 3}] {x,y,z}=a[[All,1]]

a=rand(3,3); (x,y,z)=a[:,1]

I’ll admit that I don’t often need this construct in MATLAB but it would definitely be occasionally useful. I wonder what other opinions there are out there? Do you think multiple assignment is useful (in any language)?

Last week I gave a live demo of the IPython notebook to a group of numerical analysts and one of the computations we attempted to do was to solve the following linear system using Numpy’s solve command.

Now, the matrix shown above is singular and so we expect that we might have problems. Before looking at how Numpy deals with this computation, lets take a look at what happens if you ask MATLAB to do it

>> A=[1 2 3;4 5 6;7 8 9]; >> b=[15;15;15]; >> x=A\b Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 1.541976e-18. x = -39.0000 63.0000 -24.0000

MATLAB gives us a warning that the input matrix is **close** to being singular (note that it didn’t actually recognize that it **is** singular) along with an estimate of the reciprocal of the condition number. It tells us that the results may be inaccurate and we’d do well to check. So, lets check:

>> A*x ans = 15.0000 15.0000 15.0000 >> norm(A*x-b) ans = 2.8422e-14

We seem to have dodged the bullet since, despite the singular nature of our matrix, MATLAB has able to find a valid solution. MATLAB was right to have warned us though…in other cases we might not have been so lucky.

Let’s see how Numpy deals with this using the IPython notebook:

In [1]: import numpy from numpy import array from numpy.linalg import solve A=array([[1,2,3],[4,5,6],[7,8,9]]) b=array([15,15,15]) solve(A,b) Out[1]: array([-39., 63., -24.])

It gave the same result as MATLAB [See note 1], presumably because it’s using the exact same LAPACK routine, but there was no warning of the singular nature of the matrix. During my demo, it was generally felt by everyone in the room that a warning should have been given, particularly when working in an interactive setting.

If you look at the documentation for Numpy’s solve command you’ll see that it is supposed to throw an exception when the matrix is singular but it clearly didn’t do so here. The exception is sometimes thrown though:

In [4]: C=array([[1,1,1],[1,1,1],[1,1,1]]) x=solve(C,b) --------------------------------------------------------------------------- LinAlgError Traceback (most recent call last) in () 1 C=array([[1,1,1],[1,1,1],[1,1,1]]) ----> 2 x=solve(C,b) C:\Python32\lib\site-packages\numpy\linalg\linalg.py in solve(a, b) 326 results = lapack_routine(n_eq, n_rhs, a, n_eq, pivots, b, n_eq, 0) 327 if results['info'] > 0: --> 328 raise LinAlgError('Singular matrix') 329 if one_eq: 330 return wrap(b.ravel().astype(result_t)) LinAlgError: Singular matrix

It seems that Numpy is somehow checking for exact singularity but this will rarely be detected due to rounding errors. Those I’ve spoken to consider that MATLAB’s approach of estimating the condition number and warning when that is high would be better behavior since it alerts the user to the fact that the matrix is badly conditioned.

Thanks to Nick Higham and David Silvester for useful discussions regarding this post.

**Notes**

[1] – The results really are identical which you can see by rerunning the calculation after evaluating **format long** in MATLAB and **numpy.set_printoptions(precision=15)** in Python

Along with a colleague, I’ve been playing around with Anaconda Python recently and am very impressed with it. At the time of writing, it is at version 1.7 and comes with Python 2.7.5 by default but you can install Python 3.3 using their conda package manager. After you’ve installed Anaconda, just start up a Windows command prompt (cmd.exe) and do

conda update conda conda create -n py33 python=3.3 anaconda

It will chug along for a while, downloading and installing packages before leaving you with a Python 3.3 environment that is completely separated from the default 2.7.5 environment. All you have to do to activate Python 3.3 is issue the following command at the Windows command prompt

activate py33

To demonstrate that the standard anaconda build remains untouched, launch cmd.exe, type ipython and note that you are still using Python 2.7.5

Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. C:\Users\testuser>ipython Python 2.7.5 |Anaconda 1.7.0 (64-bit)| (default, Jul 1 2013, 12:37:52) [MSC v.1500 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information. IPython 1.0.0 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]:

Exit out of ipython and activate the py33 environment before launching ipython again. This time, note that you are using Python 3.3.2

In [1]: exit() C:\Users\testuser>activate py33 Activating environment "py33"... [py33] C:\Users\testuser>ipython Python 3.3.2 |Anaconda 1.7.0 (64-bit)| (default, May 17 2013, 11:32:27) [MSC v.1500 64 bit (AMD64)] Type "copyright", "credits" or "license" for more information. IPython 1.0.0 -- An enhanced Interactive Python. ? -> Introduction and overview of IPython's features. %quickref -> Quick reference. help -> Python's own help system. object? -> Details about 'object', use 'object??' for extra details. In [1]:

The first stable version of KryPy was released in late July. KryPy is *“a Python module for Krylov subspace methods for the solution of linear algebraic systems. This includes enhanced versions of CG, MINRES and GMRES as well as methods for the efficient solution of sequences of linear systems.”*

Here’s a toy example taken from KryPy’s website that shows how easy it is to use.

from numpy import ones from scipy.sparse import spdiags from krypy.linsys import gmres N = 10 A = spdiags(range(1,N+1), [0], N, N) b = ones((N,1)) sol = gmres(A, b) print (sol['relresvec'])

Thanks to KryPy’s author, André Gaul, for the news.

I was recently chatting to a research group who were considering moving to Python from MATLAB for some of their research software output. One team member was very worried about Python’s use of indentation to denote blocks of code and wondered if braces would ever find their way into the language? Another team member pointed out that this was extremely unlikely and invited us to attempt to import braces from the __future__ module.

>>> from __future__ import braces File "", line 1 SyntaxError: not a chance

xkcd is a popular webcomic that sometimes includes hand drawn graphs in a distinctive style. Here’s a typical example

In a recent Mathematica StackExchange question, someone asked how such graphs could be automatically produced in Mathematica and code was quickly whipped up by the community. Since then, various individuals and communities have developed code to do the same thing in a range of languages. Here’s the list of examples I’ve found so far

- xkcd style graphs in Mathematica. There is also a Wolfram blog post on this subject.
- xkcd style graphs in R. A follow up blog post at vistat.
- xkcd style graphs in LaTeX
- xkcd style graphs in Python using matplotlib
- xkcd style graphs in MATLAB. There is now some code on the File Exchange that does this with your own plots.
- xkcd style graphs in javascript using D3
- xkcd style graphs in Euler
- xkcd style graphs in Fortran

Any I’ve missed?

If you have an interest in mathematics, you’ve almost certainly stumbled across The Wolfram Demonstrations Project at some time or other. Based upon Wolfram Research’s proprietary Mathematica software and containing over 8000 interactive demonstrations, The Wolfram Demonstrations Project is a fantastic resource for anyone interested in mathematics and related sciences; and now it has some competition.

Sage is a free, open source alternative to software such as Mathematica and, thanks to its interact function, it is fully capable of producing advanced, interactive mathematical demonstrations with just a few lines of code. The Sage language is based on Python and is incredibly easy to learn.

The Sage Interactive Database has been launched to showcase this functionality and its looking great. There’s currently only 31 demonstrations available but, since anyone can sign up and contribute, I expect this number to increase rapidly. For example, I took the simple applet I created back in 2009 and had it up on the database in less than 10 minutes! Unlike the Wolfram Demonstrations Project, you don’t need to purchase an expensive piece of software before you can start writing Sage Interactions….Sage is free to everyone.

Not everything is perfect, however. For example, there is no native Windows version of Sage. Windows users have to make use of a Virtualbox virtual machine which puts off many people from trying this great piece of software. Furthermore, the interactive ‘applets’ produced from Sage’s interact function are not as smooth running as those produced by Mathematica’s Manipulate function. Finally, Sage’s interact doesn’t have as many control options as Mathematica’s Manipulate (There’s no Locator control for example and my bounty still stands).

The Sage Interactive Database is a great new project and I encourage all of you to head over there, take a look around and maybe contribute something.

My attention was recently drawn to a Google+ post by JerWei Zhang where he evaluates 2^3^4 in various packages and notes that they don’t always agree. For example, in MATLAB 2010a we have 2^3^4 = 4096 which is equivalent to putting (2^3)^4 whereas Mathematica 8 gives 2^3^4 = 2417851639229258349412352 which is the same as putting 2^(3^4). JerWei’s post gives many more examples including Excel, Python and Google and the result is always one of these two (although to varying degrees of precision).

What surprised me was the fact that they disagreed at all since I thought that the operator precendence rules were an agreed standard across all software packages. In this case I’d always use brackets since _I_ am not sure what the correct interpretation of 2^3^4 should be but I would have taken it for granted that there is a standard somewhere and that all of the big hitters in the numerical world would adhere to it.

Looks like I was wrong!

Late last year I was asked to give a talk at my University to a group of academics studying financial mathematics (Black-Scholes, monte-carlo simulations, time series analysis – that sort of thing). The talk was about the NAG Numerical Library, what it could do, what environments you can use it from, licensing and how they could get their hands on it via our site license.

I also spent a few minutes talking about Python including why I thought it was a good language for numerical computing and how to interface it with the NAG C library using my tutorials and PyNAG code. I finished off with a simple graphical demonstration that minimised the Rosenbrock function using Python, Matplotlib and the NAG C-library running on Ubuntu Linux.

“So!”, I asked, “Any questions?”

The very first reply was “Does your Python-NAG interface work on Windows machines?” to which the answer at the time was “No!” I took the opportunity to ask the audience how many of them did their numerical computing in Windows (Most of the room of around 50+ people), how many people did it using Mac OS X (A small group at the back), and how many people did it in Linux (about 3).

So, if I wanted the majority of that audience to use PyNAG then I had to get it working on Windows. Fortunately, thanks to the portability of Python and the consistency of the NAG library across platforms, this proved to be rather easy to do and the result is now available for download on the main PyNAG webpage.

Let’s look at the main differences between the Linux and Windows versions

**Loading the NAG Library**

In the examples given in my Linux NAG-Python tutorials, the cllux08dgl NAG C-library was loaded using the line

libnag = cdll.LoadLibrary("/opt/NAG/cllux08dgl/lib/libnagc_nag.so.8")

In Windows the call is slightly different. Here it is for CLDLL084ZL (Mark 8 of the C library for Windows)

C_libnag = ctypes.windll.CLDLL084Z_mkl

If you are modifying any of the codes shown in my NAG-Python tutorials then you’ll need to change this line yourself. If you are using PyNAG, however, then it will already be done for you.

**Callback functions**

For my full introduction to NAG callback functions on Linux click here. The main difference between using callbacks on Windows compared to Linux is that on Linux we have

C_FUNC = CFUNCTYPE(c_double,c_double )

but on Windows we have

C_FUNC = WINFUNCTYPE(c_double,c_double )

There are several callback examples in the PyNAG distribution.

That’s pretty much it I think. Working through all of the PyNAG examples and making sure that they ran on Windows uncovered one or two bugs in my codes that didn’t affect Linux for one reason or another so it was a useful exercise all in all.

So, now you head over to the main PyNAG page and download the Windows version of my Python/NAG interface which includes a set of example codes. I also took the opportunity to throw in a couple of extra features and so upgraded PyNAG to version 0.16, check out the readme for more details. Thanks to several employees at NAG for all of their help with this including Matt, John, David, Marcin and Sorin.

Over at Mathrecreation, Dan Mackinnon has been plotting two dimensional polygonal numbers on quadratic number spirals using a piece of software called Fathom. Today’s train-journey home project for me was to reproduce this work using Mathematica and Python.

I’ll leave the mathematics to Mathrecreation and Numberspiral.com and just get straight to the code. Here’s the Mathematica version:

- Download the Mathematica Notebook
- Download a fully interactive version that will run on the free Mathematica Player

p[k_, n_] := ((k - 2) n (n + 1))/2 - (k - 3) n; Manipulate[ nums = Table[p[k, n], {n, 1, numpoints}]; If[showpoints, ListPolarPlot[Table[{2*Pi*Sqrt[n], Sqrt[n]}, {n, nums}] , Joined -> joinpoints, Axes -> False, PlotMarkers -> {Automatic, Small}, ImageSize -> {400, 400}], ListPolarPlot[Table[{2*Pi*Sqrt[n], Sqrt[n]}, {n, nums}] , Joined -> joinpoints, Axes -> False, ImageSize -> {400, 400} ] ] , {k, 2, 50, Appearance -> "Labeled"} , {{numpoints, 100, "Number of points"}, {100, 250, 500}} , {{showpoints, True, "Show points"}, {True, False}} , {{joinpoints, True, "Join points"}, {True, False}} , SaveDefinitions :> True ]

A set of 4 screenshots is shown below (click the image for a higher resolution version). The formula for polygonal numbers, p(kn,n), is only really valid for integer k and so I made a mistake when I allowed k to be any real value in the code above. However, I liked some of the resulting spirals so much that I decided to leave the mistake in.

When Dan showed the images he produced from Fathom, he mentioned that he would one day like to implement these systems in a more open platform. Well, you can’t get much more open than Python so here’s a piece of code that makes use of Python and the matplotlib package (download the file – polygonal_spiral.py).

#!/usr/bin/env python import matplotlib.pyplot as plt from math import * def p(k,n): return(((k-2)*n*(n+1))/2 -(k-3)*n) k=13 polygonal_nums = [p(k,n) for n in range(100)] theta = [2*pi*sqrt(n) for n in polygonal_nums] r = [sqrt(n) for n in polygonal_nums] myplot = plt.polar(theta,r,'.-') plt.gca().axis('off') plt.show() |

Now, something that I haven’t figured out yet is why the above python code works just fine for 100 points but if you increase it to 101 then you just get a single point. Does anyone have any ideas?

Unlike my Mathematica version, the above Python program does not give you an interactive GUI but I’ll leave that as an exercise for the reader.

**If you enjoyed this post then you might also like:**