EPSRC Research Software Engineering Fellow: Chris Woods

April 18th, 2016 | Categories: programming, RSE, Scientific Software | Tags:

This interview with The University of Bristol’s Chrys Woods is part of my series of interviews on the new cohort of EPSRC Research Software Engineering Fellows.

Could you tell us a little about yourself and how you became a Research Software Engineer?

I have been coding since preschool when my Dad bought me a Texas Instruments TI-99/4A. This had a simple BASIC, but no tape or disk storage, meaning that all of the code was lost when the computer was switched off. After that, I had an Amiga as a teenager, and had fun coding little games in my spare time. I grew up in a seaside town on the East Coast, and the industry there was just fishing and making frozen food, so it didn’t occur to me that I could do programming as a job. It was just for fun. It was only when I went to University (Southampton) that I saw that programming could be useful for science. I undertook a 3rd-year computational chemistry research project with Jon Essex at Southampton, and from there I was hooked and wanted to become a computational chemist. In Jon’s group in the late 1990’s I helped to build Beowulf compute clusters from scratch (assembling shelves, doing all the cabling, building the cluster installer disks, job schedulers etc.), as well as developing lots of software in first Fortran 77 and then C++ and Python. From there, I moved to Bristol, and wrote lots of grant applications and managed to work for about 10 years on a series of EPSRC and BBSRC funded software development projects (sincere thanks to both funders for the grants). These all culminated in a framework for molecular simulation, called Sire (http://siremol.org), around which a reasonable community has formed (about 20+ people have developed the code over the years).

The experience of working with this community made me realise that software engineering was about helping other people develop and play with code. It showed me the importance of leading by example, e.g. adding in tests, using clean designs and APIs, and writing clear documentation (although I readily admit that I am a really bad documenter).

About 2 years ago I was offered a job in BrisSynBio (a BBSRC/EPSRC Synthetic Biology Research Centre), as a technical lead, systems administrator and RSE. I have really enjoyed this position, as it made me step back from my research and really work in “services” to support other researchers. This gave me a completely new perspective on research, as I saw the world from the view of e.g. administrators, finance, procurement and technical services. This showed me that successful research depends on a whole team of energised, committed and dedicated people, and that research software engineers can play an important role as part of the research development team.

What do you think is the role of a Research Software Engineer? Is it different from a ‘normal’ researcher?

For me, research software engineering is about helping junior researchers develop their code right the first time. Helping them to structure their code so that it is easier for them to write flexible, trustably correct and performance portable software without them having to be overburdened with learning a lot of computer science. Following this, good RSE work is helping researchers build flexible frameworks that allow researchers to play with their scientific ideas. The code should allow them to prototype and play with new ideas, to get them running quickly and efficiently first time without having to have people come and re-engineer everything later.

You’ve recently won an EPSRC RSE Fellowship – congratulations! Can you give a brief overview of your project?

My project is about providing a new member of a research team – the research software engineer. This will enable a new way of doing research. Research is team based, and I want to help change the culture so that RSEs are seen as a member of the research team and not a service. The EPSRC RSE project provides funding for me as an RSE to be embedded within research groups to work with them to develop new research. Twenty projects will initially be supported; 10 in the first wave that have been allocated, and then 10 that will be allocated in response to a call. The projects cover everything from modelling chemical reactions, designing new optical machines, creating great visualisations in an interactive 3D planetarium, modelling bacterial factories and engineering new scaffolds for future vaccines.

cwoods

How long did it take you to write your Fellowship application (Any other thoughts/advice on the application process?)

I found out about the call when on holiday in Switzerland from a friend. That got me started thinking about a model for how RSEs could be added to a research team. Once I’d worked out the model, I found the proposal to be very easy to write. Indeed, it was the opportunity to write the proposal that I had always wanted to write – to put software development and good software engineering front and centre in the proposal itself. When I got back from from holiday I alerted HPC users at Bristol about what I was planning, and then met up with researchers from across the University in 10 minute quick flash talks set out my proposal for RSE projects. People contributed projects quickly, and I was soon oversubscribed. Then, writing the proposal was just about putting it all down on paper.

The strangest part was that I had consciously left an academic role when I moved into BrisSynBio, and had accepted that I was never going to become “an academic”. The hardest part was talking with my wife and persuading her that I should go back into that world.

Where do you want to be in 5 years?

I want to be running a large and successful RSE group and contributing to the development of computational science/engineering as a complete discipline, i.e. being on the path to having departments with faculty, teaching of undergraduates in good software engineering best practice, researchers in software engineering, collaborating with scientists as parts of teams to develop the next generation of well-engineered code to support 21st century science. I also want to help inspire the next generation of potential RSEs and help (1) raise awareness that programming a computer can help you leave a seaside town and travel the world, and (2) maths, physics and programming are useful skills, that there is stable career pathway for scientific software developers and RSEs, that this is an exciting and dynamic career choice, it does let you work with intelligent and energetic people, and most importantly, it puts you in a position to shape how the technology of the future will be designed and developed.

Who are your project partners?

Cresset, a company that writes software for the pharmaceutical industry, and the Software Sustainability Institute. Also, all of the researchers who will be supported by the RSE projects.

Tell me about your RSE group.

We are now building the RSE group at Bristol. Currently it is me, a new junior RSE to be appointed, and some graduates on our new Graduate Accelerator Programme (GAP) who will be appointed later this year. We anticipate growing further over the next few years.

Which programming languages and technologies do you regularly use?

C++ is my favourite, especially the functional coding support in C++11/14, closely followed by Python. I find the combination of C++ and Python is extremely powerful. It allows easy writing of fast, performant parallel code in the C++ layer, yet retains flexibility in the scripting layer which treats C++ as a library of building blocks. All unit testing can be via Python scripts that stress these building blocks.

I teach a lot of python and strongly recommend it to newcomers, e.g. see http://chryswoods.com/main/courses.html

Are there any languages/technologies that you used to use a lot but have now moved away from? Why?

Fortran. I have a soft spot for F77, but it is very 20th century. It is missing modern containers, generics, templates, virtual functions, task based parallelism, easy wrapping with scripting languages, integration with unit testing suites, etc. etc. It is also missing easy handling of low-level memory, while also providing a high level memory interface.

Perl. I loved Perl. I teach Perl, but no-one comes any more. Python is better, and it is difficult to argue against. And then the Perl community turned in on itself in going from Perl 5 to Perl 6.

Is there anything on your ‘to-learn’ list?

Management. How to Teach. Any new programming paradigm. LLVM and stuff that bridges the gap between scripted and compiled languages. Anything else in the programming world that is cool.

And, MATLAB, R, etc., as I need to learn how to interface with the communities that use those tools.

Humility. We don’t always know what is best (even if we do think we are right).

Do you have any advice for anyone who wants to become a Research Software Engineer?

My advice applies to anyone who wants to work in a university as an academic. Never forget that each grant and each award is a gift from the public. You are not given this gift so that you are employed there forever. It is given so that, in some way, you can make a difference to society. Be in research because you want to make a difference. The counter to this, is that there is a life outside academia, and it is not a failure to move on to other roles. Sometimes, like my BrisSynBio position, they can make you stronger

For research software engineering, I would say learn to communicate with people. Being able to talk with people is just as important as being able to talk with the computer. Also, learn the paradigms of programming (structural, object, functional etc.), as once you get these, different computer languages are just different syntax. Finally, learn some maths and science. They may be harder to learn, but they are fundamental, and without understanding these, it is very hard to really appreciate the complexities of research code, or to see the potential optimisations or approximations that may be available.

No comments yet.